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Abstract

The equations of motion for a two-lever pendulum are developed
using Lagrange’s equation. An assumed kinematic golf swing is used
to generate generalized forces to drive the golf robot. These moments
are used to generate a golf robot swing using LS-DYNA. The LS-
DYNA model is flexible enough so that the model can be used as a
virtual laboratory.

1 Introduction

In the golf industry, equipment is often evaluated using a robot that
swings the club to hit the ball. The well known and established robot,
called the Iron Byron, is a machine that can be modelled as a two-link
swing. That is, the left arm is pinned at the center of the swing arc
and connects to the club with another pin joint. The robot starts
stationary from the top of the swing and applied moments at the pins
drive the rotation the club. Even though it is well known that the
Iron Byron (two-lever model) does not closely emulate the human golf
swing, it is still widely used.

One of the most simplistic ways to model a golf swing is with two
levers. The first lever represents a right-handed golfer’s left arm and is
pinned at the shoulder end. At the end representing the hands, a pin
joint connects the left arm to the club. Early and recent work using
this model involves rigid body levers [1, 2, 3]. The two lever model
has two major deficiencies: the golf club is far from rigid, and only test
robots, like the Iron Byron, swing this way. Advantages of the two
lever model of the golf swing with rigid elements are in the relatively
simplistic solutions that may be obtained using Lagrangean dynamics
(or Newtonian as well). Closed form solutions for the equations of mo-
tion may be obtained for over simplistic generalized moment functions
applied at the shoulder and wrist [1, 2]. Because of this, numerical
integration of the equations of motion is required for a realistic solu-
tion.

Attempts have been made to determine functional form of the
generalized moments applied at the shoulder and wrist. This has been
done by using stroboscopic photography to determine the path of the
hands and club head as a function of time. Using this kinematic data,
the forces were calculated from the equations of motion.



To address the problem of a rigid club not being realistic, Winfield
and Soriano have have used finite elements to represent the shaft in
what was essentially a two lever model [4]. This model was driven
by a kinematic assumption on the two generalized degrees of freedom.
In addition to having a flexible shaft in this model, the club lever had
added fidelity in that the shaft mass was distributed and the club head
was a point mass.

In this paper the Lagrangean equations of motion are developed for
a two lever model. A kinematic swing is considered in which the arm
and club angles are given prescribed generalized displacements and the
required generalized forces computed. This insures the proper release
of the golf club and meeting of the ball. Inertial properties of the robot
and club are used to compute moments to drive the robot. These
moments are applied by using load curves and LOAD RIGID BODY
commands.

2 Two Pendulum Model

Consider the two lever model as two pendulums pinned together to
model the robot golf swing. The upper link, which represents the arm,
is pinned at the upper end (shoulder) which is considered the center
of the swing. Label this body A and denote its length as LA. Define
the distance from the pinned end to the center of gravity of body A
to be dA. The angular position of body A is defined by the angle α
it makes with the downward vertical direction. Furthermore, let the
arm have mass mA and moment of inertia about the pinned end IA.
Note that the moment of inertia about the arm’s center of gravity is
given by ĪA = IA − mAd2

A.
The grip end of the golf club is connected to the arm, body A,

with a pinned connection. Label the club as body C and denote its
length as LC . The distance from the grip end of the club to the club’s
center of gravity is defined as dC . Let the angle β define the angular
position of the club and be defined as the angle the club makes with
the downward vertical direction. The mass of the club is mC and the
moment of inertia about the club’s center of gravity is ĪC .

Having defined the two lever golf swing model as above, the equa-
tions of motion can be derived and solved subject to various initial
and loading conditions. Lagrange’s equations provide a convenient
means for deriving the basic differential equations and are based on



Figure 1: Two-lever golf swing model
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the Lagrange function defined by

L = T − V (1)

where T is the kinetic energy and V is the potential energy. The
equation of motion for the ith generalized coordinate, qi is given sym-
bolically by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (2)

where Qi is the generalized force corresponding to the coordinate qi.
In the two lever golf swing model qi = {α, β} with corresponding
shoulder and wrist moments, Qα and Qβ , as their generalized forces.

The kinetic energy for the two lever swing model described above
is

T =
1
2
IAα̇2 +

1
2
mC v̄2

C +
1
2
ĪC

(
α̇2 + β̇2

)
(3)

where v̄C is the velocity of the club’s center of gravity. The velocity
component v̄c is easily eliminated from the kinetic energy equation
using the two lever geometry definitions. Thus, the kinetic energy
may be written in terms of angles α and β and their derivatives as
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where θ = β − α. It is convenient to write the kinetic energy in the
form

T = Wα̇2 + X α̇β̇ + Yβ̇2 + Z
(
α̇2 + α̇β̇

)
cos β (5)

where
W = 1

2IA + 1
2mCL2

A + 1
2 ĪC + 1

2mCd2
c

X = ĪC + mCd2
C

Y = 1
2 ĪC + 1

2mCd2
C

Z = mCLAdc

(6)

The potential energy for the two lever swing model is the same
as the potential energy for a simple double pendulum whose plane
is tilted at approximately η = 57o with the vertical to represent the
swing plane. Thus,

V = [mAgdA (1 − cos α) + mCgLA (1 − cos α)
+mCgdC (1 − cos β)] sin η

(7)

where g is the acceleration due to gravity.
It has been shown that the the force on the club due to gravity

does not greatly influence the swing [3]. Thus, the potential energy
terms are neglected in the modelling of this paper. Hereafter, the
Lagrangian function L is replaced the the kinetic energy T for deriving
the equations of motion.

Differentiation of the kinetic energy (Eq. 5) as prescribed by La-
grange’s equation (Eq. 2) leads to the following equations of motion:

2Wα̈ + X β̈ + Z
(
2α̈ + β̈

)
cos β = Qα (8)

X α̈ + 2Yβ̈ + Zα̈ cos β + Z
(
α̇2 + α̇β̇

)
sinβ = Qβ (9)

A final generalized force required to implement the golfer’s wrist
roll may be written in terms of angle γ measuring the location of the
club face. The equation of motion for this angle is



(
ĪCr + mhd2

h

)
γ̈ = Qγ (10)

where ICr is the moment of inertia of the shaft about its long axis, mh

is the mass of the club head and dh is the distance of the club head’s
center of mass to the club shaft axis.

Generalized forces Qα, Qβ , and Qγ will be the applied moments
used to drive the LS-DYNA robot model.

3 Kinematic Driven Swing

A simple way to swing the golf club is to prescribe the angles α and β
as a function of time. In general, the club is at rest at the top of the
swing and accelerates in the downswing until reaching a maximum at
the ball. Taking this acceleration to be gradual is a good assumption
for a proper golf swing. Thus, a good starting point for modelling the
downswing a sinusoidal function.

Let the total time of the downswing be designated by ta. A second
time critical for the swing of the golf club is the time at which the
wrists unhinge, tr. In time ta the golfer’s arm goes from the top-
of-the-swing position to the impact position. This angle will depend
on the degree the golfer takes the club back. For a swing having
the club parallel to the ground at the top of the swing the angle α
will go through π/2 radians. (This is based on a wrist cock angle
of βo = π

2 which is subsequently defined.) Any amount the club is
short of parallel is defined as αo. The above can be accomplished by
assuming the following definition for α

α(t) = A

(
t − ta

π
sin

π

ta
t

)
+ αo − π

2
(11)

with t = 0 representing the top of the swing and t = ta representing
impact. Observe that α(0) = αo − π/2 and α(ta) = 0 as desired if

A =
π

2ta
− αo

ta
(12)

To model the kinematics of the wrist unhinging, define time du-
ration tb as the time period between unhinging and impact with the
ball

tb = ta − tr (13)



Before the wrists unhinge the angle β is fixed and simply defined as

β = βo = −π

2
∀ t < tr (14)

It should be noted that a range of angles can be taken as the wrist
cock angle, βo, rather than just π

2 . As the wrists unhinge the angle β
is written as

β(t′) = B

(
t′ − tb

π
sin

π

tb
t′

)
− βo (15)

where t′ = t − tr and B = βo

tb
.

Note that both A and B have units of rad/s, that is, angular
velocity units. Differentiation of α and β results in impact angular
velocities of 2A and 2B for α̇ and β̇, respectively.

The wrist roll also occurs after the wrist release. Thus,

γ(t′) = C

(
t′ − tb

π
sin

π

tb
t′

)
− π

2
(16)

where t′ = t − tr and C = π
2tb

.
Using Eqs. 11, 15, and 16 in Eqs. 8 - 10 gives a way to compute

moments Qα, Qβ , and Qγ .

4 LS-DYNA Model of the Two-lever

Swing

The model of the two-lever golf swing was based on a hitting robot
used in club testing. In this machine, the arm portion of the model was
taken as a 25.4 mm thick rigid block of solid elements which is 482.6
mm long by 101.6 mm wide. This part rotates about the middle of one
end that is the center of rotation for the two-lever swing. Nodes on
top and bottom of the plate are pinned using CONSTRAINED NODE
allowing for fixed-axis rotation. The arm is driven by an applied
moment, Qα, to the arm using the LOAD RIGID BODY command.

At the end of the arm opposite to the rotation center is a rigid
block of solid elements used to implement the wrist release of the golf
swing. This block is a 50.8 mm cube whose dimension was taken
to approximate the corresponding part of an Iron Byron robot. The
wrist release block is attached to the arm using a constrained revolute
joint. Since the wrist release has to maintain β = βo during the initial



Figure 2: Overall golf robot model

part of the downswing a contact constraint was used. Segments were
defined on both the arm and wrist release block and tied together.
This contact definition is given a death time corresponding to the
wrist release time tr. The wrist roll, like the arm, was driven by an
applied moment, Qβ , to the rigid body (LOAD RIGID BODY).

The final piece of the robot is the collet that holds the golf club.
This part was modelled using rigid shell elements in a cylindrical
shape. The collet attaches to the wrist release block using a con-
strained revolute joint. In addition to attaching the club to the robot,
the collet provides the wrist roll that squares the club face to the ball
(hence, the revolute joint). To keep the club from twisting during the
downswing, a segment contact was defined tieing the wrist roll until
tr. Squaring the club face after the wrist release is accomplished by
applying a moment, Qγ via a LOAD RIGID BODY. For the wrist roll
a follower moment was used.

A club is placed in the robot by constraining one or more shaft
nodes to the collet (CONSTRAINED EXTRA NODES). When find-
ing the moment of inertia, mass center location, and mass for the
above analysis, the inertia properties of the collet must be added to
those of the club. Figure 2 shows the overall model (with the excep-
tion of the ball) while Figure 3 shows a detail of the arm-wrist-collet
portion including revolute joints and tied contact definitions.

In the above model, moments Qα, Qβ , and Qγ are input using



load curves. These curves can be generated using Eqs. 8, 9, and 10.
The inertia properties of the robot and the club was determined from
running the model for a short period and then examining the D3HSP
file. It is noted that the inertia properties of the club as defined above
needs to include those of wrist block, collet, shaft, and club head. For
the wrist roll, the inertia term consists of the collet, shaft, and club
head.

It should be noted that moments Qβ and Qγ generated from La-
grange’s equations are nonzero prior to the wrist release. Since there
are contact definitions active in this time period, the load curves are
taken as zero before the wrist release. Immediately after the wrist
release the load curve is taken to be value computed by Lagrange’s
equation.

Figure 3 shows input parameters for a swing along with the form of
the arm and wrist moments. Using the load curves generated for Qα,
Qβ , and Qγ a LS-DYNA simulation shows the effectiveness of model.

5 Conclusion

The equations of motion for a double pendulum were derived to model
a golf robot swing. Generalized moments from the resulting equations
were computed and used to drive an LS-DYNA model of the robot.
This provides an effective way to generate many different swing profiles
for swinging the virtual golf robot.
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Figure 3: Detail of revolute joints and tied contact definitions

Figure 4: Panel used to input parameters and generate moment curves


