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Introduction

The use of polymeric materials has been increasing in vari-
ous industries such as automotive, sports, and electronic 
industries because of their excellent impact resistance and 
energy-absorbing capability. Precise knowledge of their 
dynamic behavior is needed to further widen the applica-
bility of polymeric materials. The split Hopkinson pressure 
bar (SHPB), originally developed by Kolsky, [1] has been 
widely recognized as one of the most reliable experimen-
tal methods for measuring the high strain rate properties of 
engineering materials. Nevertheless, a conventional SHPB 
made from metallic bars has great difficulties in accurately 
characterizing low-impedance materials because of a larger 
impedance mismatch between specimen materials and 
metallic bars. To be more specific, a transmitted strain sig-
nal in a metallic output bar is so low that it is very difficult 
to precisely characterize their high strain rate stress–strain 
behavior. Recently, numerous researchers have been con-
cerned with SHPB techniques for evaluating the dynamic 
properties of low-impedance or soft materials such as poly-
mers, polymeric foams, rubbers, and biological tissues. For 
this purpose, they replaced input and output metallic bars 
with corresponding viscoelastic bars to reduce the imped-
ance mismatch between specimens and metallic bars. A 
specific problem usually arises when input and output bars 
made of polymeric materials are used. Since such materi-
als exhibit viscoelastic effects, we need to take into account 
the attenuation and dispersion of strain waves propa-
gating in polymeric bars. A crucial point for accurately 
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determining the dynamic properties of specimens is to cor-
rect the waveforms of strain pulses traveling along poly-
meric bars. Wang et  al. [2] first developed a viscoelastic 
SHPB technique. They incorporated the viscoelastic effects 
into the one-dimensional wave equation and used a simple 
three-element model (or a standard linear solid model). 
Aleyaasin and Harrigan [3] recently used the same model 
to incorporate the effect of lateral inertia in a viscoelastic 
equivalent to the Love equation. Zhao and Garry [4] gen-
eralized the Pochhammer-Chree equation for elastic bars 
to viscoelastic bars, and used a nine-parameter model for 
PMMA (polymethyl methacrylate) bars. These parameters 
were determined from experimental strain histories through 
an inverse analysis. Sogabe et al. [5] proposed an alterna-
tive viscoelastic SHPB method, and thereby identified a 
mechanical model of ABS resin, in which corrections of 
the waveforms were conducted in the frequency domain 
using Fourier transforms. Zhao et al. [6] analyzed the use 
and modeling of polymeric pressure bars in the SHPB. 
Subsequently, Zhao and his coworker applied a viscoelastic 
SHPB to characterize the dynamic behavior of polymeric 
foams [7], polymer matrix composite plates [8], and alu-
minum honeycombs [9]. Zhao and Gary [10], and Bacon 
[11, 12] studied wave dispersion and attenuation for a vis-
coelastic SHPB method. Bacon and Brun [13] presented a 
polymeric SHPB method for predicting wave propagation 
in elastic and viscoelastic non-uniform bars. Sawas et  al. 
[14] developed a detailed procedure for correcting the vis-
coelastic wave and calculating the stress–strain data for two 
different compliant materials. Cheng et  al. [15] devised a 
viscoelastic SHPB, in which corrections of the wave dis-
persion and attenuation were made using spectral analysis. 
Bussac et  al. [16] used analytical models to quantify the 
errors associated with predicting forces and displacements 
in bars from strain and velocity records at other positions 
in the bar. Casem et al. [17] investigated a wave separation 
technique that is applicable to viscoelastic wave propaga-
tion. Subsequently, Casem et  al. [18] discussed a poly-
carbonate SHPB equipped with electromagnetic velocity 
gages and applied it to test low-density foams. Mousavi 
et al. [19] discussed the accuracy of the compression mod-
ulus of a polypropylene (PP) specimen determined using a 
non-equilibrium viscoelastic SHPB. Liu and Subhash [20] 
presented a new approach to characterize the viscoelas-
tic behavior of polymer (or cast acrylic) bars in the time 
domain using wave propagation phenomena. Doman et al. 
[21] and Quellet et  al. [22] applied a viscoelastic SHPB 
to determine the high strain rate compressive response of 
polyurethane rubber and three types of polymeric foams, 
respectively. Bussac et  al. [23] reported an analytical 
model for the strain histories resulting from the viscoelas-
tic impact of a cylindrical striker and a long cylindrical 
bar. Salisbury and Cronin [24] measured the high strain 

rate compressive properties of ballistic gelatin (used as a 
soft tissue simulant) using two viscoelastic SHPBs. Ahonsi 
et  al. [25] investigated two different techniques for accu-
rately determining the propagation coefficient of longitu-
dinal stress waves in PMMA bars. Butt and Xue [26] also 
determined the wave propagation coefficient from longitu-
dinal strain waves in PMMA bars. Harrigan et al. [27] con-
ducted finite element simulations for verifying the accuracy 
of the test data from a viscoelastic SHPB. Butt et al. [28] 
proposed a parametric identification method for viscoelas-
tic parameters of PMMA using the wave propagation test 
data and identified five parameters of a generalized Max-
well model. Johnson et  al. [29] and Irausquín et  al. [30] 
characterized the dynamic behavior of polyurea and closed-
cell aluminum foams using PMMA bars, respectively, with 
the help of Bacon’s method [11].

In the present work, a viscoelastic SHPB made of 
PMMA bars was developed to characterize the dynamic 
behavior of low-impedance materials. The viscoelastic 
SHPB technique was applied to identify mechanical models 
for two-piece golf ball materials under the assumption that 
the geometric dispersion (or three-dimensional effects) can 
be neglected. The validity of three-element solid models 
identified was verified by FE analysis and impact tests for 
axial collision between a golf ball and a long elastic bar.

Viscoelastic SHPB Technique

Theory of Wave Propagation in a Viscoelastic Bar

We will consider the elementary one-dimensional theory 
of a longitudinal wave in a cylindrical bar. The one-dimen-
sional equation of longitudinal wave motion is written as

where σ and ε denote the axial stress and strain, respec-
tively; ρ is the mass density of the bar; x is the coordinate 
along the bar axis, and t is the time. The constitutive equa-
tion for a linear viscoelastic solid is expressed in a general-
ized form as [31]

whereD = �∕�t indicates a differential operator; P(D) and 
Q(D) are polynomials in terms of D. The Fourier transform 
of a function f (t) defined in terms of time t is given by

where ω is an angular frequency. Applying the Fourier 
transform to Eqs. (1) and (2) leads to

(1)�2�

�x2
= �

�2�

�t2

(2)P(D)� = Q(D)�

(3)f̄ (𝜔) =

∞

∫
−∞

f (t) ⋅ exp (−i𝜔t) dt,
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Substitution of Eq.  (5) into Eq.  (4) yields the Fourier 
transformed wave equation:

where J(ω) is a complex compliance defined in terms of 
P(iω) and Q(iω) or �̄�(𝜔) and �̄�(𝜔) as

The complex compliance J(ω) represents a frequency 
response of the linear viscoelastic material; its real part 
J1(ω) indicates a storage compliance and its imaginary part 
J2(ω) indicates a loss compliance. The solution to Eq.  (6) 
for a semi-infinite bar (0 ⩽ x < ∞) is given by

where �̄�(0,𝜔) is the Fourier transform of � (0, t) cor-
responding to a strain wave propagating in the positive 
x-direction; �(�) and k(�) are the attenuation (or damping) 
coefficient and the wavenumber, respectively, which are 
related to J1(�) and J2(�) by

where �(�) quantifies the reduction in magnitude of a prop-
agating wave, whereas k(�) = [�∕C(�)] is related to the 
phase velocity C(�) and quantifies the dispersion of waves 
with different frequencies.

Correction of Waveforms in Viscoelastic SHPB

Figure 1 shows a schematic of the present SHPB setup con-
sisting of an input bar, an output bar, and a striker bar of 
PMMA. A cylindrical specimen is sandwiched between 
input and output bars. Strain gages ① and ② are placed on 
the input and output bars, respectively. When the input bar 
is impacted by a striker bar launched with compressed air 
through a gun barrel, an incident strain pulse � 1

i
(t) is gener-

ated in the input bar and propagates toward the specimen. 
Part of this is reflected at the bar/specimen interface A. Its 

(4)
d2�̄�(𝜔)

dx2
= (i𝜔)2�̄�(𝜔) = −𝜌𝜔2�̄�(𝜔),

(5)P(i𝜔)�̄�(𝜔) = Q(i𝜔)�̄�(𝜔).

(6)
{

d2

dx2
+ 𝜌𝜔2J(𝜔)

}
�̄�(𝜔) = 0.

(7)J(𝜔) = J1(𝜔) − iJ2(𝜔) =
P(i𝜔)

Q(i𝜔)
=

�̄�(𝜔)

�̄�(𝜔)
.

(8)�̄�(x,𝜔) = �̄�(0,𝜔) ⋅ exp[−{𝛼(𝜔) + ik(𝜔)}x],

(9)
k(�)2 − �(�)2 = ��2J1(�)

2�(�) ⋅ k(�) = ��2J2(�)

}
,

remaining part propagates through the specimen and into 
the output bar. The incident strain pulse and reflected strain 
pulse � 1

r
(t) are measured with strain gage ① and the trans-

mitted strain pulse � 2

t
(t) is recorded with strain gage ②. Let 

�̄�
1

i
(𝜔), �̄� 1

r
(𝜔), and �̄� 2

t
(𝜔) be the Fourier transforms of the 

three measured strain pulses. From Eq. (8), we can derive 
the following solutions for correcting the respective strain 
pulses to be the waveforms at interfaces A and B:

where l1 indicates the distance between strain gage ① and 
interface A; l1 denotes the distance between strain gage ② and 
interface B. Note that the signs in the exponential terms 
of Eqs.  (11) and (12) must be positive (+) because the 
reflected and transmitted strain pulses should be corrected 
in the reverse directions of their wave propagation. In this 
way, using Eqs.  (10) to (12), the incident and reflected 
strain pulses can be corrected to be those at interface A, and 
the transmitted one can be corrected to be that at interface 
B. We can obtain the corrected waveforms of three strain 
pulses in the time domain by applying the inverse Fourier 
transform to Eqs.  (10) to (12), where the inverse Fourier 
transform of f̄ (𝜔) is defined by

Consequently, we can determine �A
i
(t), �A

r
(t), and �B

t
(t) at 

both interfaces A and B.

Viscoelastic SHPB Testing

Preparation of Test Materials and Specimen Geometry

Two different low-impedance materials were chosen in this 
work. A polybutadiene rubber and an ionomer resin, which 
were used as the core and cover materials of a two-piece 
golf ball (Windy 384 KASCO, Japan), were tested to exam-
ine their dynamic properties. The materials were molded 
into cylindrical specimens under the same conditions 

(10)�̄�A
i
(𝜔) = �̄�

1

i
(𝜔) ⋅ exp[+{𝛼(𝜔) + ik(𝜔)}l1]

(11)�̄�A
r
(𝜔) = �̄� 1

r
(𝜔) ⋅ exp[+{𝛼(𝜔) + ik(𝜔)}l1]

(12)�̄�B
t
(𝜔) = �̄�

2

t
(𝜔) ⋅ exp[+{𝛼(𝜔) + ik(𝜔)}l2]

(13)f (t) =
1

2𝜋

∞

∫
−∞

f̄ (𝜔) ⋅ exp(i𝜔t)d𝜔.

Fig. 1  Schematic of SHPB 
setup made with PMMA bars
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as used in manufacturing the golf balls, and their dimen-
sions are listed in Table 1. The slenderness ratio l/d given 
in Table  1 is much smaller than the values of l/d = 0.5–1 
[32] usually adopted in conventional SHPB tests. This is 
mainly because of difficulties in achieving dynamic stress 
equilibrium within the low-impedance specimens. Similar 
specimens with smaller slenderness ratios l/d that were far 
less than 0.5 were also used in the modified SHPB testing 
of RTV630 silicone rubber [33] and in the conventional 
SHPB testing of two polymers [34].

Stress, Strain Rate, and Strain of Specimen

The viscoelastic SHPB tests were conducted at room tem-
perature of 20–25 ℃ using the same measurement system 
as used in the wave propagation experiments (see Fig. 16). 
The viscoelastic response of PMMA bars is sensitive to 
ambient temperatures, but our preliminary tests indicated 
that their viscoelastic properties remain almost unchanged 
in the above temperature range. The dimensions of the 
input/output bars and the striker bar are listed in Table 2, 
including the strain gage’s locations from interfaces A and 
B. To minimize frictional effects, a thin layer of petroleum 
jelly was applied between the specimen ends and the input/
output bars, but a pulse shaper was not used in this work. 
Figure 2 presents typical strain gage records from the vis-
coelastic SHPB test on the polybutadiene rubber (core 
material) specimen with a 12  mm diameter and a 4  mm 
length. The top trace gives the incident and reflected strain 

pulses (� 1

i
(t) and � 1

r
(t) and the bottom trace gives the trans-

mitted strain pulse (� 1

t
(t). The strain gage signals were 

recorded at a sampling rate of 1 MHz. Note that the dura-
tions of the reflected and transmitted strain pulses are much 
longer than that of the incident strain pulse (≈170  µs). 
Figure  3a shows the three corrected strain pulses, �A

i
(t), 

�A
r
(t), and �B

t
(t), calculated from the inverse Fourier trans-

forms. A close look at Fig.  3b suggests that the relation 
�A
i
(t) −

{
−�A

r
(t)
}
= �B

t
(t) holds. By applying the Fourier 

transform to the three strain waves, we can evaluate the 
front stress �̄�A(𝜔) at interface A and the back stress �̄�B(𝜔) 
at interface B in the frequency domain:

where J(�) of PMMA is given by Eq.  (A3). The stresses 
�A(t) and �B(t) in the time domain can be derived by apply-
ing the inverse Fourier transform to Eqs.  (14) and (15). 
Figure  4 gives the compressive stress histories applied at 
both ends of the specimen, verifying that dynamic stress 
equilibrium within the specimen was achieved. Prelimi-
nary tests revealed that dynamic stress equilibrium was not 
achieved either in the polybutadiene rubber specimen or in 
the ionomer resin specimen for a length longer than 6 mm. 
This is because the wave velocities (≈240–570 m/s) in the 
golf ball materials with a lower mechanical impedance was 
by far lower than those in metallic materials. Therefore, we 
must use specimens with smaller slenderness ratios in the 
viscoelastic SHPB tests. The stress �S(t), strain rate �̇�S(t), 
and strain �S(t) of the specimen were obtained from a three-
wave stress analysis of the SHPB test [35] as

(14)�̄�A(𝜔) =
1

J(𝜔)

{
�̄�A
i
(𝜔) + �̄�A

r
(𝜔)

}
,

(15)�̄�B(𝜔) =
�̄�B
t
(𝜔)

J(𝜔)
,

Table 1  Shape and dimensions of compression specimens

l

d

a Dynamic stress equilibrium did not hold within compression speci-
mens with slenderness ratio of 1/2

Material Length l (mm) Diameter d 
(mm)

Slenderness ratios 
l /d

Polybutadi-
ene rubber 
(Core of 
Golf ball)

4.0, (6.0)a 12.0 1/3, (1/2)a

Ionomer 
resin 
(Cover of 
golf ball)

Fig. 2  Typical strain gage records from viscoelastic SHPB test on 
polybutadiene rubber specimen (Note: compression is upward and 
tension is downward)
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(16)�S(t) =
EA{�A

i
(t) + �A

r
(t) + �B

t
(t)}

2AS

(17)�̇�S(t) =

√
E

𝜌
⋅

1

ls

{
𝜀A
i
(t) − 𝜀A

r
(t) − 𝜀B

t
(t)
}

(18)�S(t) =

√
E

�
⋅

1

ls

l

∫
0

{
�A
i
(t) − �A

r
(t) − �B

t
(t)
}
dt

where E, ρ, and A are the Young’s modulus, the mass den-
sity, and the cross-sectional area of the input and output 
elastic bars; ls and As are the length and the cross-sectional 
area of the specimen. Under the assumption of force equi-
librium across the specimen, we can simplify Eqs. (16) to 
(18) as

By applying the Fourier transform to Eqs.  (19) to (21) 
and replacing Young’s modulus E with a reciprocal of the 
complex compliance J(�) of the input and output bars of 
PMMA, we can obtain the stress, strain rate and strain of 
the specimen in the frequency domain:

Note that Eq.  (24) can be derived using Eqs.  (7) and 
(9). J(�), �(�), and k(�) of PMMA were determined using 
Eq.  (A3). By applying the inverse Fourier transform to 
Eqs. (22) to (24), we have the stress, strain rate, and strain 
of the specimen in the time domain. Figure  5 shows the 
strain and strain rate histories of the polybutadiene rub-
ber specimen. By eliminating time t through Eqs.  (22) to 
(24), we can determine the stress–strain and strain rate-
strain relations, which are shown in Fig.  6. The dynamic 
stress–strain loop is completely closed. The strain rate does 

(19)�S(t) =
EA�B

t
(t)

AS

(20)�̇�S(t) =

√
E

𝜌
⋅

2

ls

{
𝜀A
i
(t) − 𝜀B

t
(t)
}

(21)�S(t) =

√
E

�
⋅

2

ls

l

∫
0

{
�A
i
(t) − �B

t
(t)
}
dt

(22)�̄�s(𝜔) =
A�̄�B

t
(𝜔)

AsJ(𝜔)
,

(23)̄̇𝜀s(𝜔) =

√
1

𝜌J(𝜔)

2

ls

{
�̄�A
i
(𝜔) − �̄�B

t
(𝜔)

}
,

(24)

�̄�
S
(𝜔) =

√
−

1

𝜌𝜔2J(𝜔)
⋅

2

l
s

{
�̄�A
i
(𝜔) − �̄�B

t
(𝜔)

}

=
2

{𝛼(𝜔) + ik(𝜔)}l
s

{
�̄�A
i
(𝜔) − �̄�B

t
(𝜔)

}
.

(a)

(b)

Fig. 3  Three typical strain pulses from polybutadiene rubber speci-
men. a Three corrected strain pulses, b Three time-shifted strain 
pulses including inverted reflected strain pulse

Table 2  Specifications for viscoelastic SHPB system

Material Striker bar (mm) Input and output bars (mm)

Diameter Length Diameter Length Distance between strain gage ① 
and interface A l 1

Distance between strain gage ② 
and interface B l 2

Polymethyl methacrylate 
(PMMA)

10.0 40 15.0 700 300 50
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not remain constant during loading or unloading and varies 
its sign from compression (+) to tension (–) at a maximum 
loading strain.

Identification of Mechanical Models

Using Eqs.  (22) and (24), we can determine the complex 
compliance Js(�) of the specimen, which is given by

Figure  7 depicts the experimental and predicted com-
plex compliances for the two golf ball materials. The plots 
denote average values of Js1(�) and Js2(�) obtained from 
10 viscoelastic SHPB tests. Vertical bars on the two curves 
indicate the standard deviations of the measured Js1(�) and 
Js2(�) values. The three viscoelastic parameters (E1, E2, 
η2) were determined using best fits with the plots, and are 
denoted with solid lines in Fig. 7a, b. As is the case with 
PMMA, the complex compliances of both the polybutadi-
ene rubber and the ionomer resin can be well approximated 

(25)Js(𝜔) = Js1(𝜔) − iJs2(𝜔) = �̄�S(𝜔)∕�̄�S(𝜔).

Fig. 4  Compressive stress histories applied at both ends of polybuta-
diene rubber specimen

Fig. 5  Compressive strain and strain rate histories for polybutadiene 
rubber specimen

Fig. 6  Compressive stress–strain and strain rate-strain loops for 
polybutadiene rubber specimen

(a)

(b)

Fig. 7  Frequency dependence of complex compliances of two-piece 
golf ball materials and identified viscoelastic parameters. 
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with the three-element solid model up to a frequency of 
nearly 15  kHz. We can see that the three-element solid 
models provide reasonable estimations for the dynamic 
behavior of the golf ball materials.

Validation of Mechanical Models and FE 
Simulations

Golf Ball Collision Tests

To verify the accuracy of the mechanical models of the 
two golf ball materials, we performed axial collision tests 
and measured both contact force histories and coefficients 
of restitution. Figure 8 shows a schematic of the experi-
mental device for producing axial collisions of the two-
piece golf ball with a long elastic bar. The golf ball was 
mounted on a Nylon 66 sabot and was fired with com-
pressed air through a gun barrel and impinged on one end 
of a 3000  mm long Ti-6Al-4V alloy bar with a 27  mm 
diameter. The Nylon 66 sabot (diameter = 50 ± 0.05  mm 
and length = 40 mm) was stopped by a steel-ring stopper 
attached to the muzzle of the gun barrel. The generated 
compressive strain pulse �(t) was recorded with a pair 
of P-type semiconductor strain gages (Kyowa, KSP-2-
120-E4, gage factor 120) placed at a distance of 250 mm 
from the impact end of the Ti-alloy bar. The contact force 
history was then determined from AE�(t) (A is the cross-
sectional area and E is the Young’s modulus of the Ti-
alloy bar) using elementary one-dimensional wave the-
ory. The incident and rebound velocities, Vi and Vr, of the 
golf ball were measured with a photo-sensor installed just 
before the impact end of the Ti-alloy bar. The coefficients 
of restitution were determined from −Vr∕Vi because the 
mass of the Ti-alloy bar was by far larger than that of the 

golf ball. Five measurements of the coefficients of res-
titution were made at three different incident velocities 
between 31 and 51 m/s.

Finite Element (FE) Analysis

FE investigations on the axial collision between the two-
piece golf ball and the Ti-alloy bar were performed using 
LS-DYNA code. Figure  9 illustrates the golf ball colli-
sion with the Ti-alloy bar and three points in the core 
region at which axial strain rates were estimated from FE 
analysis. Figure 10 indicates the construction and dimen-
sions of the two-piece golf ball consisting of the inner 
and outer materials. Its average weight was 43.4  g. The 
core and cover parts of the two-piece golf ball were mod-
eled using 8-node solid elements. The Ti-alloy bar was 
also modeled with the same element types. The num-
bers of elements used for modeling the core region, the 
cover region, and the Ti-alloy bar were 12,480, 3744, and 
16,800, respectively. The friction between the golf ball 

Fig. 8  Schematic of golf ball 
launching device and measure-
ment system

Fig. 9  Illustration of collision between two-piece golf ball and elas-
tic bar and three locations in core region at which strain rates were 
evaluated using FE simulations
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and the Ti-alloy bar was assumed to follow Coulomb’s 
friction law. Namely, the coefficient of friction was set to 
0.3, which was adopted by Tanaka et al. [36] in numerical 
simulations of golf ball collisions with a steel bar using 
FE code in ABAQUS/Explicit. In this work, the explicit 
central difference scheme was used to integrate the equa-
tions of motion with respect to time. The time increment 
used was Δt = 0.245 μs. Table 3 lists the mechanical and 
physical properties of the two golf ball materials and the 
Ti-alloy bar used in the FE analysis. Figure 11 shows the 
FE simulation results for the axial stress distribution in 
the golf ball and the Ti-alloy bar at the maximum defor-
mation at Vi = 40.3 m/s. The color contour map indicates 
the components of the normal stress in the axial direction 
of the bar. Figure  12 exhibits the FE simulation results 
of the axial strain rate histories at the center of core 
region ② and at two symmetric points ① and ③, both of 
which were 10 mm from the center point. The maximum 
axial strain rates at the three points were estimated to be 
around 1500–4000 s−1, corresponding to the same order 
of strain rates as that for the rubber specimen shown in 
Fig. 5.

Figure 13 shows the FE simulation results of the effect 
of the friction coefficient on the contact force histories 
generated by golf ball collisions with the Ti-alloy bar at 
Vi = 31.1 m/s. The friction coefficients ranged from 0.0 to 
0.3 and the contact forces were obtained by integrating the 
stress distributions of the impact face over the cross-section 

of the Ti-alloy bar. The differences in the contact force 
histories at any time were very small, and similar results 
(not shown here) were also obtained for Vi = 40.3 and 
Vi = 51.0 m/s. The simulation results suggest that the peak 
of contact forces became slightly larger and the duration 
became slightly shorter as the friction coefficient increased. 
Variations in the friction coefficient did not greatly affect 
the contact force histories. This implies that the contact 
force histories are dominantly governed by the dynamic 
properties of the golf ball materials.

Figure 14 shows comparisons between the experimental 
and numerical results of the contact force histories at three 
different incident velocities of the golf ball. The experimen-
tal and numerical results for Vi = 31.1 and Vi = 40.3  m/s 
agree well with each other. In contrast, a slight discrepancy 
between them is observed at Vi = 51.0 m/s. This is mainly 
because non-linear viscoelastic behavior becomes signifi-
cant with increasing incident velocity and increasing defor-
mation of the golf ball.

Figure 15 shows a comparison of the experimental and 
predicted relationship between the coefficient of restitution 
and the incident velocity for the axial collision tests. The 
solid circles (•) denote the mean values of five experimen-
tal data sets, and the open triangles (Δ) indicate predicted 
values at a coefficient of friction of µ = 0.30. The predicted 

Fig. 10  Construction and dimensions of two-piece golf ball (Windy 
384, Kasco, Japan)

Fig. 11  FE mesh and simula-
tion results for axial stress 
distributions of the golf ball 
and elastic bar at the maximum 
deformation of the golf ball at 
an incident ball speed of 40 m/s 
(Note: time t is measured from 
the moment at which the ball 
contacts the elastic bar)

Fig. 12  FE simulation results for axial strain rate histories at differ-
ent three locations in the core region. (Note: strain rate in compres-
sion is positive)
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coefficients of restitution agree with the experimental ones, 
except at Vi = 51.0 m/s. The measured and predicted coef-
ficients of restitution were found to decrease with increas-
ing incident velocity. This is because the energy dissipa-
tion involved in the deformation process of the golf ball 
increases with increasing incident velocity. The discrepan-
cies in the coefficients of restitution are closely associated 
with those in the measured and numerical contact force his-
tories at Vi = 51.0 m/s, as shown in Fig. 14. Consequently, 
the three-element solid models given in Fig.  7 are valid 
over a strain rate range of up to nearly 4000 s−1 with small 
deformations.

Table 3  Mechanical and physical properties of golf ball materials 
and elastic bar at room temperature used in FE analysis

a Young’s modulus is not directly measured and estimated from 
E = E1E2/(E1 + E2)
where E1 and E2 are given in this Table

Mechanical property Golf ball (Windy 384) Elastic bar 
(Ti-6Al-
4V)Core 

(Polybuta-
diene)

Cover (Ionomer)

Mass density (kg/m3) 1140 960 4420
Poisson’s ratio 0.376 0.319 0.330
Young’s modulus (MPa) (65.5)a (310)a 113,000
E1 (MPa) 121 987 –
E2 (MPa) 143 452 –
η2 (kPa・s) 2.86 6.02 –

(a) (b)

Fig. 13  FE simulation results for the effect of the friction coefficient on the contact force histories resulting from two-piece golf ball impact at 
Vi = 31.1 m/s. 
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Summary and Conclusions

A viscoelastic split Hopkinson bar made of PMMA bars was 
developed and applied to evaluate the dynamic stress–strain 
properties of two-piece golf ball materials. Mechanical 

models for the core and cover materials were identified from 
the complex compliances derived from the Fourier trans-
forms of three strain pulses. The accuracy of the three-ele-
ment solid models was verified through comparisons between 
the experimental and numerical contact force histories during 
golf ball impacts. The limitations of the three-element solid 
models were discussed. From the present work, we can draw 
the following conclusions:

1. The three-element solid model is suitable for describ-
ing the viscoelastic behavior of PMMA within a fre-
quency range of up to nearly 15 kHz.

2. The three-element solid models for the core and cover 
materials identified with the viscoelastic SHPB tech-
nique provide reasonable predictions of compressive 
behavior at strain rates of up to around 4000 s−1 within 
small strains of up to nearly 0.1.

3. As for low-impedance or soft materials, specimens 
with slenderness ratios that are much less than 0.5 
must be used in the viscoelastic SHPB tests to facilitate 
dynamic stress equilibrium.

4. FE simulations of the golf ball collisions suggest that 
as the friction coefficient grows, the time to reach a 
peak in the contact force history shortens and its dura-
tion decreases in normal impacts.
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Appendix

Identification of Mechanical Models for the PMMA Bar

The viscoelastic behavior of the PMMA bar used in the 
SHPB tests was characterized at room temperature with 

(a)

(b)

(c)

Fig. 14  Experimental and numerical results for contact force histo-
ries resulting from two-piece golf ball impact at three different inci-
dent velocities

Fig. 15  Experimental and predicted relationship between the coeffi-
cient of restitution of a two-piece golf ball and the incident velocity



387J. dynamic behavior mater. (2017) 3:377–390 

1 3

the wave propagation method proposed by Sogabe and 
Tsuzuki [37]. Figure 16 shows a schematic of the longitu-
dinal wave propagation experiment with a 2000 mm long 
PMMA bar measuring 20 mm in diameter. The mass den-
sity was 1180 kg/m3. A 100 mm long PMMA striker bar 
measuring 15  mm in diameter was launched with com-
pressed air from an air compressor and impacted the front 
end of a PMMA bar supported with V–blocks. Four foil 
strain gages with a gage length of 1 mm (Kyowa, KFG-
1-120-C1-11, gage factor 2.1) were mounted in intervals 
of 200 mm along the PMMA bar. A pair of strain gages 
located diametrically opposite on the bar at each position 
were connected in series to cancel bending waves. The 
first measurement point x1 was located at a distance of 
100  mm from the impact end. The output signals from 
the strain gages were fed through a bridge circuit into a 
digital storage oscilloscope (Iwatsu Electric Co., Model 
LT-224) and were converted to digital data. The veloci-
ties of the striker bar were adjusted so that the peak value 
of the strain pulse at the first measurement point x1 was 
nearly 1000–3000  με. Figure  17 shows typical strain 
waveforms measured at four different positions along 
the PMMA bar. The four measured strain waves were 
resolved into their Fourier components by employing fast 
Fourier transforms with respect to time t. Fig. 18 depicts 
the absolute values of Fourier components, or the Fou-
rier spectrums of the four strain pulses. A little attenua-
tion of the amplitudes can be observed over a given fre-
quency range of 15  kHz. The spectrums �̄�j(0)(j = 1 − 4) 
have almost similar peak amplitudes of nearly 4 × 10− 8 
s at a zero frequency, corresponding to the area within 
each waveform in Fig.  17. We found that these wave-
forms propagate, keeping the area constant. When the 
assumption of a∕Λ < 0.1 [38] (a is the bar radius and Λ 
is the wavelength) is satisfied, the longitudinal motion of 
the bar can be regarded as one-dimensional. The maxi-
mum of the frequency components included in the strain 
waveforms of these experiments was nearly 10 kHz. The 
wave front velocity Cf  in Fig.  17 was estimated to be 
approximately 2200 m/s from the strain wave propagation 
time. Then, a∕Λ = a ⋅ f∕Cf ≅ 0.045, indicating that the 

geometric dispersion was negligibly small. From Eq. (8), 
we can obtain the following solutions from the Fourier 
transforms of strain histories:

(A1)
�̄�j(x,𝜔) = �̄�0(0, 𝜔) ⋅ exp [−{𝛼(𝜔) + ik(𝜔)xj}] ; j = 1, 2, ⋯ , n .

Fig. 16  Schematic of longitudi-
nal wave propagation experi-
ment in a PMMA bar

Fig. 17  Typical strain waveforms measured at four different locations 
along a PMMA bar revealing attenuation

Fig. 18  Fourier spectrums of four measured strain waveforms in a 
PMMA bar
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�(�)and k(�) can be determined by applying a least- 
squares method to Eq. (A1).

in which n (= 4) is the number of measurement points and 
arg = tan−1

{
J2(�)∕J1(�)

}
 denotes the phase angle of �̄�j(𝜔).  

From Eq. (9), we can experimentally determine the real and 
imaginary parts of the complex compliance as functions of 
�, or J1(�) and J2(�). Fig. 19 shows the plots for average 
values of J1(�) and J2(�) obtained from 10 wave propaga-
tion experiments. The respective vertical bars on the two 
curves indicate standard deviations for J1(�) and J2(�). 
In an effort to adopt an appropriate mechanical model for 
the complex compliances, we investigated the frequency 
dependences of 1(�) and J2(�) for a three-element solid 
model (Fig. 20a) and a four-element fluid model (Fig. 20b). 
The analytical expressions for J1(�) and J2(�) for each 
model are given respectively by

Both of these are shown graphically in Fig.  20. Fig-
ure 19 indicates that J1(�) decreases up to a frequency of 
around 4  kHz, and then become almost constant, while 

(A2)

𝛼(𝜔) =

∑
xj
∑

log ��̄�j(𝜔)� − n
∑

xj log ��̄�j(𝜔)�
n
∑

x2
j
−
�∑

xj
�2

k(𝜔) =

∑
xj
∑

arg �̄�j(𝜔) − n
∑

xj arg �̄�j(𝜔)

n
∑

x2
j
−
�∑

xj
�2

⎫
⎪⎪⎬⎪⎪⎭

(A3)

J1(�) =
1

E1

+
E2

E2
2 + (��2)

2

J2(�) =
��2

E2
2 + (��2)

2

⎫
⎪⎪⎬⎪⎪⎭

for the three − element solid model and

(A4)

J1(�) =
1

E1

+
E3

E3
2 + (��3)

2

J2(�) =
1

��2
+

��3

E3
2 + (��3)

2

⎫
⎪⎪⎬⎪⎪⎭

for the four − element fluid model.

J2(�) reaches a peak at about 4 kHz, and then decreases 
gradually. It follows that the three-element solid model 
shown in Fig. 20a can be selected as a valid model exhib-
iting such characteristics. The three viscoelastic param-
eters (E1, E2, and �2) were determined from best fits to 
the plots, and are included in Fig. 19. Three strain wave-
forms �2(t), �3(t), and �4(t) can be obtained by applying 
the inverse Fourier transform to Eq. (A1) using the exper-
imental waveform �1(t) at x = 0.0 m. Fig. 21 provides a 
comparison between the three measured and predicted 
strain waveforms, indicating good agreement. The three 
viscoelastic parameters for mechanical models of the 
input and output bars of PMMA were used in the viscoe-
lastic SHPB tests.

For reference, the viscoelastic parameters identified for 
the three-element solid model of PMMA are compared 
with those given in Refs [23, 25, 37] in Table 4. The val-
ues of the three parameters are in reasonably good agree-
ment with those obtained by others. Slight variations in 
the respective parameters are probably due to different 
manufacturing processes for PMMA bars.

Table 4  Comparison of 
viscoelastic parameters 
identified for three-element 
solid model of PMMA at room 
temperature

Values of viscoelastic parameter given for PMMA are converted from those for three-element standard lin-
ear solid model
a (–) indicates no data available

Reference Viscoelastic parameter Poisson’s ratio
ν

Mass density
ρ(kg/m3)

E1 (GPa) E2 (GPa) η2 (MPa・s)

Present work 5.66 37.0 1.81 0.360 1180
Sogabe & Tsuzuki [37] 5.25 16.9 2.13 0.365 1183
Bussac et al. [23] 5.78 72.3 4.75 (–)a 1183
Ahonsi et al. [25] 5.99 28.5 0.68 0.38 1190

Fig. 19  Frequency dependence of complex compliance of PMMA



389J. dynamic behavior mater. (2017) 3:377–390 

1 3

References

 1. Kolsky H (1949) An investigation of mechanical properties of 
materials at very high rates of loading. Proc Phys Soc Lond B 
62(11):676–700

 2. Wang L, Labibes K, Azari Z, Pluvinage G (1994) Generalization 
of split Hopkinson bar technique to use viscoelastic bars. Int J 
Impact Eng 15(5):669–686

 3. Aleyaasin M, Harrigan JJ (2010) Wave dispersion and attenua-
tion in viscoelastic polymeric bars: analysing the effect of lateral 
inertia. Int J Mech Sci 52(5):754–757

 4. Zhao H, Gary G (1995) A three dimensional analytical solution 
of the longitudinal wave propagation in an infinite linear viscoe-
lastic cylindrical bar. Application to experimental techniques. J 
Mech Phys Solids 43(8):1335–1348

 5. Sogabe Y, Yokoyama T, Yokoyama T, Nakano M, Kishida K 
(1995) A split Hopkinson bar method for testing materials with 
low characteristic impedance. ASME Dynamic Fracture, Fail-
ure and Deformation PVP 300 (editors: Nishioka T, Epstein 
JS):137–143

 6. Zhao H, Gary G, Klepaczko JR (1997) On the use of a viscoelas-
tic split Hopkinson pressure bar. Int J Impact Eng 19(4):319–330

 7. Zhao H (1997) Testing of polymeric foams at high and medium 
strain rates. Polymer Test 16(5):507–516

 8. Zhao H, Gary G (1997) An experimental investigation of com-
pressive failure strength of fibre-reinforced polymer-matrix 
composite plates under impact loading. Compos Sci Tech 
57(3):287–292

 9. Zhao H, Gary G (1998) Crushing behaviour of aluminium hon-
eycombs under impact loading. Int J Impact Eng 21(10):827–836

 10. Zhao H, Gary G (1997) A new method for the separation of 
waves: application to the SHPB technique for an unlimited dura-
tion of measurement. J Mech Phys Solids 45(7):1185–1202

 11. Bacon C (1998) An experimental method for considering disper-
sion and attenuation in a viscoelastic Hopkinson bar. Exp Mech 
38(4):242–249

 12. Bacon C (1999) Separation of waves propagating in an elastic 
or viscoelastic Hopkinson pressure bar with three-dimensional 
effects. Int J Impact Eng 22(1):55–69

 13. Bacon C, Brun A (2000) Methodology for a Hopkinson test with 
a non-uniform viscoelastic bar. Int J Impact Eng 24(3):219–230

 14. Sawas O, Brar NS, Brockman RA (1998) Dynamic characteriza-
tion of compliant materials using an all-polymeric split Hopkin-
son bar. Exp Mech 38(3):204–210

(a) (b)

Fig. 20  Frequency dependence of real and imaginary parts of complex compliances, J1(ω) and J2(ω), for two different mechanical models 

Fig. 21  Comparison between measured and predicted strain wave-
forms at three different locations along PMMA bar



390 J. dynamic behavior mater. (2017) 3:377–390

1 3

 15. Cheng ZQ, Crandall JR., Pilkey WD (1998) Wave dispersion and 
attenuation in viscoelastic split Hopkinson pressure bar. Shock 
Vib 5(5–6):307–315

 16. Bussac MN, Collet P, Gary G, Othman R (2002) An optimisation 
method for separating and rebuilding one-dimensional dispersive 
waves from multi-point measurements. Application to elastic or 
viscoelastic bars. J Mech Phys Solids 50(2):321–349

 17. Casem DT, Fourney WL, Chang P (2003) Wave separation in 
viscoelastic pressure bars using single-point measurements of 
strain and velocity. Polymer Test 22(2):155–164

 18. Casem DT, Fourney WL, Chang P (2003) A polymeric split 
Hopkinson pressure bar instrumented with velocity gages. Exp 
Mech 43(4):420–427

 19. Mousavi S, Welch K, Valdek U, Lundberg B (2005) Non-equi-
librium split Hopkinson pressure bar procedure for non-par-
ametric identification of complex modulus. Int J Impact Eng 
31(9):1133–1151

 20. Liu Q, Subhash G (2006) Characterization of viscoelastic prop-
erties of polymer bar using iterative deconvolution in the time 
domain. Mech Mater 38(12):1105–1117

 21. Doman DA, Cronin DS, Salisbury CP (2006) Characterization 
of polyurethane rubber at high deformation rates. Exp Mech 
46(3):367–376

 22. Quellet S, Cronin D, Worswick M (2006) Compressive response 
of polymeric foams under quasi-static, medium and high strain 
rate conditions. Polymer Test 25(6):731–743

 23. Bussac MN, Collet P, Gary G, Lundberg B, Mousavi S (2008) 
Viscoelastic impact between a cylindrical striker and a long 
cylindrical bar. Int J Impact Eng 35(4):226–239

 24. Salisbury CP, Cronin DS (2009) Mechanical properties of bal-
listic gelatin at high deformation rates. Exp Mech 49(6):829–840

 25. Ahonsi B, Harrigan JJ, Aleyaasin M (2012) On the propagation 
coefficient of longitudinal stress waves in viscoelastic bars. Int J 
Impact Eng 45:39–51

 26. Butt HSU, Xue P (2014) Determination of the wave propagation 
coefficient of viscoelastic SHPB: significance for characteriza-
tion of cellular materials. Int J Impact Eng 74:83–91

 27. Harrigan JJ, Ahonsi B, Palamidi E, Reid SR (2014) Experimen-
tal and numerical investigations on the use of polymer Hopkin-
son pressure bars. Phil Trans R Soc A 372:20130201

 28. Butt HSU, Xue P, Jiang TZ, Wang B (2015) Parametric iden-
tification for material of viscoelastic SHPB from wave propa-
gation data incorporating geometrical effects. Int J Mech Sci 
91(2023):46–54

 29. Johnson TPM, Sarva SS, Socrate S (2010) Comparison of low 
impedance split-Hopkinson pressure bar techniques in the char-
acterization of polyurea. Exp Mech 50(7):931–940

 30. Irausquín I, Pérez-Castellanos JL, Miranda V, Teixeira-Dias F 
(2013) Evaluation of the effect of the strain rate on the compres-
sive response of a closed-cell aluminum foam using the split 
Hopkinson pressure bar test. Mater Des 47:698–705

 31. Flügge W (1972) Viscoelasticity, Springer, Berlin 2nd revised 
edition: 21

 32. Gray G. T. III (2000) Classic split-Hopkinson pressure bar test-
ing, in ASM Handbook: Vol. 8, Mechanical Testing and Evalua-
tion. ASM International, Materials Park, Ohio pp 471

 33. Chen W, Zhang B, Forrestal, MJ (1999) A split Hopkinson bar 
technique for low-impedance materials. Exp Mech 39(2):81–85

 34. Siviour CR, Walley SM, Proud WG, Field JE (2005) The high 
strain rate compressive behaviour of polycarbonate and polyvi-
nylidene difluoride. Polymer 46(26):12546–12555

 35. Gray GT III (2000) Classic split-Hopkinson pressure bar test-
ing, ASM Handbook Vol. 8, Mechanical Testing and Evaluation. 
ASM International. Materials Park, Ohio 2000:465–466

 36. Tanaka K, Sato F, Oodaira H, Teranishi Y, Sato F, Ujihashi S 
(2006) Construction of the finite-element models of golf balls 
and simulations of their collisions, Proc I Mech Eng Part L 
220(1):13–22

 37. Sogabe Y, Tsuzuki M (1986) Identification of the dynamic prop-
erties of linear viscoelastic materials by the wave propagation 
testing. Bull JSME 29(254):2410–2417

 38. Kolsky H (1963) Stress waves in solids. Dover, New York


	Identification of Mechanical Models for Golf Ball Materials Using a Viscoelastic Split Hopkinson Pressure Bar
	Abstract 
	Introduction
	Viscoelastic SHPB Technique
	Theory of Wave Propagation in a Viscoelastic Bar
	Correction of Waveforms in Viscoelastic SHPB

	Viscoelastic SHPB Testing
	Preparation of Test Materials and Specimen Geometry
	Stress, Strain Rate, and Strain of Specimen
	Identification of Mechanical Models

	Validation of Mechanical Models and FE Simulations
	Golf Ball Collision Tests
	Finite Element (FE) Analysis

	Summary and Conclusions
	Acknowledgements 
	References


