MECHANICAL ENGINEERING PROGRAM <u>ABET COURSE SYLLABUS</u>

ME 448 Thermal System Design (4 Units) Required

Course Description: (2022-26 Catalog)	Design of thermal systems. Engineering economics, thermal component sizing, and simulation techniques applied to the design and performance analysis of thermal systems. 3 lectures, 1 laboratory.	
Prerequisite Courses:	ME 303, ME 343, ME 347.	
Prerequisites by Topic:	Coverage of all topics presumes completion of basic engineering science courses in thermodynamics, fluid mechanics and heat transfer.	
Textbook: (and/or other required material)	<u>Fundamentals of Heat and Mass Transfer</u> , by Bergman and Lavine, 8 th Edition, John Wiley, 2017.	
	Fox and McDonald's Introduction to Fluid Mechanics, by Pritchard and Mitchell, 9 th Edition, John Wiley, 2015.	
	EES Engineering Equation Solver, F-Chart Software.	
References:	<u>Fundamentals of Engineering Thermodynamics</u> , by Moran, Shapiro, Boettner, and Bailey, 8 th Edition, 2014.	
Course Coordinator/Instructor:	christopher C. Pascual, Professor of ME	
Course Learning Outcomes:	 The student will be able to: Solve heat transfer problems for temperature distribution and energy transfer rates using both analytical and numerical techniques. Evaluate thermal systems based on life-cycle economics. Analyze and choose an appropriate heat exchanger for a thermal system application. Select an appropriate pump for a complex piping network. Evaluate the effect of pipe diameter, flow rate, pipe length, pipe roughness, and minor losses on system capital and operating costs. Perform a thermal system simulation and solve for a workable solution using the method of successive substitution. Design a thermal system. 	

Relationship of Course to Mechanical Engineering Student Outcomes:	SO 1: Mastered (M) SO 2: Mastered (M) SO 3: Mastered (M) SO 4: SO 5: Mastered (M) SO 6: SO 7: Mastered (M)		
Topics Covered:	Heat Transfer and Multimode Heat Transfer Review (3 lectures) 2-D Conduction and Numerical Analysis (3 lectures) Engineering Economics (6 lectures) Heat Exchangers (5 lectures) Pumps and Piping Systems (5 lectures) System Simulation and Optimization (6 lectures)		
Laboratory Projects:	 EES Program (1 week) Design Project(s) Including Parametric Study (8 weeks) Optimization Problem (1 week) 		
Class/Lab Schedule:	Three 50-minute lectures per week. One 170-minute lab per week.		
Contribution of Course to Meeting the Professional Component:	 (a) College-level mathematics and basic sciences: (b) Engineering Topics: Design: (c) General Education: (d) Other: 	0 credits 3 credits 1 credit 0 credits 0 credits	
		0 cicuits	
Prepared by: Chris Pascual	Date: 8/16/22		
Chiris i ascual	0/10/22		